Outline	Simple Interest	Discount	Compound interest	Ordinary Annuiti	es Other Annuities Certain	Variable Payment

Quantitative Finance Economics, Finance and Management

Joaquim Montezuma de Carvalho, Alfredo D. Egídio dos Reis

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline	Simple Interest	Discount	Compound interest	Ordinary Annuities	Other Annuities Certain	Variable Payment
000						
Programme						

Ordinary Annuities

- 4.1 The future value of an ordinary annuity
- 4.2 The Present Value of an Ordinary Annuity
- 4.3 The Periodic Payment or Rent for an Ordinary Annuity

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Other Annuities Certain

- 5.1 Deferred Annuities
- 5.1 Perpetuities
- O Variable Payment Annuities
 - 6.1 Arithmetic
 - 6.2 Geometric
- Ø Amortisation of Debts and Amortisation Schedules
- Investing in bonds
- Leasing
- Shares valuation

 Outline
 Simple Interest
 Discount
 Compound interest
 Ordinary Annuities
 Other Annuities Certain
 Variable Payment

 000
 00000000
 00000
 00000
 00000
 00000
 000000000

Increasing Arithmetic Progression

Example (Payments in Increasing Arithmetic form)

O John is buying a computer and iPhone payable in three instalments: €950, 1000 e 1050 (interest included, 9% annual).Present Value?

P.V. =
$$950.00(1.09)^{-1} + 1000.00(1.09)^{-2} + 1050.00(1.09)^{-3}$$

= 2524.03 €

+
$$50a_{\overline{3}|9\%}$$
 + $50_{1|}a_{\overline{2}|9\%}$ + $50_{2|}a_{\overline{1}|9\%}$
= €2524.03 = (950 - 50) $a_{\overline{3}|}$ + 50 (la)_{3|}

▲□▶ ▲■▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Outline 000	Simple Interest	Discount 00000	Compound interest	Ordinary Annuities 0	Other Annuities Certain	Variable Payment ○●○○○○○	
Increasing Arithmetic Progression							

Result (P.V. Payments in Increasing Arithmetic form)

Present Value (P.V.)

$$PV = (C - h) a_{\overline{n}|} + h (a_{\overline{n}|} + 1_{||} a_{\overline{n-1}|} + 2_{||} a_{\overline{n-2}|} + \dots + n-1_{||} a_{\overline{1}|}) = = (C - h) a_{\overline{n}|i} + h. (la)_{\overline{n}|i}$$

where, simplifying,

$$(la)_{\overline{n}|i} = \frac{\ddot{a}_{\overline{n}|i} - nv^n}{i} = \frac{\ddot{a}_{\overline{n}|i} - n(1+i)^{-n}}{i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Decreasing Arithmetic Progression

Example (Payments in Decreasing Arithmetic form)

Edward is buying an *iPod* payble in 4 monthly instalments of 45, 35, 25 e $15 \in I_M = 0,012$, $h^* = -10$. P.V.?

 $PV = 45(1.012)^{-1} + 35(1.012)^{-2} + 25(1.012)^{-3} + 15(1.012)^{-4}$

Looking backwards, $PV = 45v + 35v^2 + 25v^3 + 15v^4$ $= 5v + 5v^2 + 5v^3 + 5v^4$ $10v + 10v^2 + 10v^3 + 10v^4$ + + 10v + $10v^2$ + $10v^3$ + $10v + 10v^2$ +10*v* = 5*a*₄ + $10(a_{\overline{A}} + a_{\overline{3}} + a_{\overline{2}})$ $+a_{11}$) = $(15-10) a_{\overline{4}} + 10 (Da)_{\overline{a}}$ $5a_{\overline{4}} + 10\frac{4-a_{\overline{4}_{1,2\%}}}{0.012}$ =

$$= a_{\overline{n}|i} + a_{\overline{n-1}|i} + \dots + a_{\overline{3}|i} + a_{\overline{2}|i} + a_{\overline{1}|i}$$
$$(Da)_{\overline{n}|i} = \frac{n - a_{\overline{n}|i}}{i}, P.V. \text{ with } D = h = 1)$$

 $\perp v$

Outline	Simple Interest	Discount	Compound interest	Ordinary Annuities	Other Annuities Certain	Variable Payment	
						0000000	

Example

John is buying a computer, paying in three instalments: 1st \in 950, others with 25% increase, i = 9%.

 $PV = 950(1,09)^{-1} + 950 \times 1.25(1,09)^{-2} + 950 \times 1.25^{2}(1,09)^{-3}$ = 3017, 26€

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Outline	Simple Interest	Discount Compound interest	Ordinary Annuities	Other Annuities Certain	Variable Payment
					0000000
-					

- 1st Payment: C; rate: r = h.
- If h > 1, annuity is increasing;
- If 0 < h < 1, annuity is decreasing.
- P.V.: Geometric series with rate hv:

P.V. =
$$Pv + Phv^2 + Ph^2v^3 + ... + Ph^{n-1}v^n$$

= $P\left(\frac{v - h^{n-1}v^n \times hv}{1 - hv}\right) = P\left(\frac{v(1 - h^nv^n)}{v(1/v - h)}\right)$
= $P\left(\frac{1 - h^n(1 + i)^{-n}}{1 + i - h}\right)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで